Validity-guided (re)clustering with applications to image segmentation

نویسندگان

  • Amine Bensaid
  • Lawrence O. Hall
  • James C. Bezdek
  • Laurence P. Clarke
  • Martin L. Silbiger
  • John A. Arrington
  • F. Reed Murtagh
چکیده

When clustering algorithms are applied to image seg-mentation, the goal is to solve a classification problem. However, these algorithms do not directly optimize classification quality. As a result, they are susceptible to two problems: P1) the criterion they optimize may not be a good estimator of " true " classification quality, and P2) they often admit many (suboptha€) solutions. This paper introduces an algorithm that uses cluster validity to mitigate P1 and P2. The validity-guided (re)clustering (VGC) algorithm uses cluster-validity information to guide a fuzzy (re)clustering process toward better solutions. It starts with a partition generated by a soft or fuzzy clustering algorithm. Then it iteratively alters the partition by applying (novel) split-and-merge operations to the clusters. Partition modifications that result in improved partition validity are retained. VGC is tested on both synthetic and real-world data. For magnetic resonance image (MRI) segmentation, evaluations by radiologists show that VGC outperforms the (unsupervised) fuzzy c-means algorithm, and VGC's performance approaches that of the (supervised) k-nearest-neighbors algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1996